


# HCB71919C.DLR.T.P4S

Hybrid-Spindellager, angestellt, paar- oder satzweise, Druckwinkel 15°, eine Schmierrille mit zwei Schmierbohrungen, zwei Ringnuten mit O-Ringen, Hartgewebekäfig, eingeengte Toleranzen, Ringe aus Qualitätswälzlagerstahl, Wälzkörper aus Siliziumnitrid







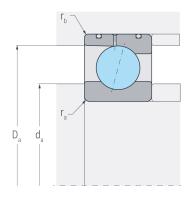
## **Abmessungen**

| d                   | (mm) | 95  | Bohrungsdurchmesser     |
|---------------------|------|-----|-------------------------|
| D                   | (mm) | 130 | Außendurchmesser        |
| В                   | (mm) | 18  | Breite                  |
| а                   | (mm) | 24  | Stützweite              |
| r <sub>s min</sub>  | (mm) | 0.6 | minimaler Kantenabstand |
| r <sub>1s min</sub> | (mm) | 0.6 | minimaler Kantenabstand |

### **Druckwinkel**

| α (°) 15 Druckwinkel |  |
|----------------------|--|
|----------------------|--|

## **DLR-Abmessung**


| $N_{\scriptscriptstyle B}$ | (mm) | 1.8  | Breite der Nut           |
|----------------------------|------|------|--------------------------|
| $N_{A}$                    | (mm) | 4    | Abstand der Nut          |
| $S_{\scriptscriptstyle B}$ | (mm) | 2.4  | Breite der Schmierrille  |
| S <sub>A</sub>             | (mm) | 10.4 | Abstand der Schmierrille |
|                            |      |      | ·                        |

#### Gewicht

|--|

## HCB71919C.DLR.T.P4S

Hybrid-Spindellager, angestellt, paar- oder satzweise, Druckwinkel 15°, eine Schmierrille mit zwei Schmierbohrungen, zwei Ringnuten mit O-Ringen, Hartgewebekäfig, eingeengte Toleranzen, Ringe aus Qualitätswälzlagerstahl, Wälzkörper aus Siliziumnitrid



#### Anschlussmaße

| d <sub>a</sub> h12        | (mm) | 102 | Durchmesser der Wellenschulter  |
|---------------------------|------|-----|---------------------------------|
| <b>D</b> <sub>a</sub> H12 | (mm) | 124 | Durchmesser der Gehäuseschulter |
| r <sub>a max</sub>        | (mm) | 0.6 | maximaler Rundungsradius        |
| <b>r</b> <sub>b max</sub> | (mm) | 0.6 | maximaler Rundungsradius        |

### Leistungsdaten

| C <sub>r</sub>         | (kN)                 | 47.1  | dynamische Tragzahl, radial     |
|------------------------|----------------------|-------|---------------------------------|
| $C_{or}$               | (kN)                 | 40.8  | statische Tragzahl, radial      |
| $\mathbf{C}_{ur}$      | (kN)                 | 1.53  | Ermüdungsgrenzbelastung, radial |
| $\mathbf{n}_{Goil}$    | (min <sup>-1</sup> ) | 22000 | Grenzdrehzahl, Ölschmierung     |
| F <sub>VL</sub>        | (N)                  | 120   | Vorspannkraft, leicht           |
| F <sub>VM</sub>        | (N)                  | 440   | Vorspannkraft, mittel           |
| <b>F</b> <sub>vs</sub> | (N)                  | 950   | Vorspannkraft, schwer           |
| C <sub>a L</sub>       | (N/μm)               | 72.8  | axiale Steifigkeit, leicht      |
| C <sub>a M</sub>       | (N/μm)               | 124   | axiale Steifigkeit, mittel      |
| C <sub>a S</sub>       | (N/μm)               | 175   | axiale Steifigkeit, schwer      |
| K <sub>aE L</sub>      | (N)                  | 362   | Abhebekraft, leicht             |
| K <sub>aE M</sub>      | (N)                  | 1410  | Abhebekraft, mittel             |
| K <sub>aE S</sub>      | (N)                  | 3180  | Abhebekraft, schwer             |
| •                      |                      | •     |                                 |